The Frobenius morphism in invariant theory II
نویسندگان
چکیده
Let R be the homogeneous coordinate ring of Grassmannian G=Gr(2,n) defined over an algebraically closed field k characteristic p≥max{n−2,3}. In this paper we give a description decomposition R, considered as graded Rpr-module, for r≥2. This is companion to [16], where case r=1 was treated, and taken together, our results imply that has finite F-representation type (FFRT). Though it expected all rings invariants reductive groups have FFRT, ours first non-trivial example such group which not linearly reductive. As corollary, show differential operators Dk(R) simple, G global (GFFRT) provides noncommutative resolution Rpr.
منابع مشابه
Tilting Bundles via the Frobenius Morphism
Let X be be a smooth algebraic variety over an algebraically closed field k of characteristic p > 0, and F : X → X the absolute Frobenius morphism. In this paper we develop a technique for computing the cohomology groups H(X, End(F∗OX)) and show that these groups vanish for i > 0 in a number of cases that include some toric Fano varieties, blowups of the projective plane (e.g., Del Pezzo surfac...
متن کاملTheta divisors and the Frobenius morphism
We introduce theta divisors for vector bundles and relate them to the ordinariness of curves in characteristic p > 0. We prove, following M. Raynaud, that the sheaf of locally exact differentials in characteristic p > 0 has a theta divisor, and that the generic curve in (any) genus g ≥ 2 and (any) characteristic p > 0 has a cover that is not ordinary (and which we explicitely construct). 1 Thet...
متن کاملFrobenius Morphism and Semi-stable Bundles
This article is the expanded version of a talk given at the conference: Algebraic geometry in East Asia 2008. In this notes, I intend to give a brief survey of results on the behavior of semi-stable bundles under the Frobenius pullback and direct images. Some results are new.
متن کاملStability of Direct Images under Frobenius Morphism
Let X be a smooth projective variety over an algebraically field k with char(k) = p > 0 and F : X → X1 be the relative Frobenius morphism. When dim(X) = 1, we prove that F∗W is a stable bundle for any stable bundle W (Theorem 2.3). As a step to study the question for higher dimensional X , we generalize the canonical filtration (defined by Joshi-Ramanan-Xia-Yu for curves) to higher dimensional ...
متن کاملDirect Images of Bundles under Frobenius Morphism
Let X be a smooth projective variety of dimension n over an algebraically closed field k with char(k) = p > 0 and F : X → X1 be the relative Frobenius morphism. For any vector bundle W on X , we prove that instability of F∗W is bounded by instability of W ⊗ T(Ω X ) (0 ≤ l ≤ n(p − 1))(Corollary 4.8). When X is a smooth projective curve of genus g ≥ 2, it implies F∗W being stable whenever W is st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2022
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2022.108587